

An overall seasonality test based on recursive feature elimination in conditional random forests Karsten Webel, Daniel Ollech / Deutsche Bundesbank, DG Statistics

Statistics Statistics for the series and Forecasting, Granada, 20 September 2018

This presentation represents the authors' personal opinions and does not necessarily reflect the views of the Deutsche Bundesbank or its staff.

Agenda

Motivation

- Random forests and conditional inference trees
- Candidate and overall seasonality tests
- Simulation algorithm and design
- Results
- Summary
- References

Karsten Webel (BBk) Overall seasonality test – 5th IIISE, 20 September 2018 Page 1 / 43

What is next?

Motivation

Random forests and conditional inference trees

Candidate and overall seasonality tests

Simulation algorithm and design

Results

Summary

References

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 2 / 43

What is seasonality? (I/II)

Deutsche Bundesbank

S3PR0323.Chart

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 3 / 43

What is seasonality? (I/II)

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 3 / 43

What is seasonality? (I/II)

Deutsche Bundesbank

S3PR0323B.Chart

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 3 / 43

What is seasonality? (II/II)

Deutsche Bundesbank, Statistical Supplement 4 "Seasonally adjusted business statistics"

'Usual seasonal fluctuations' means those movements which

- recur with similar intensity
- in the same season each year

and which, on the basis of past movements of the time series in question,

rean, under normal circumstances, be expected to recur.

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 4 / 43

Are these economic time series seasonal?

Deutsche Bundesbank

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 5 / 43

Answers from JDemetra+

Are these economic time series seasonal?

	Retail trade turnover:		
Test	games and toys	HICP: tobacco	CPI: energy
QS	Yes	No	Perhaps
FT	Yes	No	Perhaps
KW	Yes	No	Yes
SP	Yes	No	No
PD	Yes	No	Yes
SD	Yes	No	Yes

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 6 / 43

Research questions

How can we combine results of a set of seasonality tests?

- Classification problem
 - Random forest

How can we separate relevant from irrelevant seasonality tests?

- Informational content
 - Variable importance measures

How can we construct an informative overall seasonality tests?

- Sequential "winners stay loser walks" competition
 - ♀ Recursive feature elimination

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 7 / 43

What is next?

Motivation

Random forests and conditional inference trees

Candidate and overall seasonality tests

Simulation algorithm and design

Results

Summary

References

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 8 / 43

Random forest (I/III)

Training data

$$\mathcal{L} = (\mathbf{X}\mathbf{Y})$$

Predictors

$$\mathbf{X} = (\mathbf{X}_1 \dots \mathbf{X}_p) \quad \text{with} \quad \mathbf{X}_j = (x_{1j}, \dots, x_{Nj})^\top$$

Categorical response

$$\mathbf{Y} = (y_1, \dots, y_N)^\top \quad \text{with} \quad y_i \in \{1, \dots, K\}$$

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 9 / 43

Random forest (II/III)

Classification tree

Single vote

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 10 / 43

Random forest (II/III) Basic idea

Classification tree

Independent classification trees

Single vote

Majority vote

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 10 / 43

Random forest (III/III) Potential issues

Classical approach

- Variable selection, node splitting ~> No separation
- Source ~ Sampling scheme at each node

Potential biases

- Variable selection $\rightsquigarrow \mathbf{X}_j$'s with larger measurement scales, higher number of categories, missing values
- Variable importance measures \rightsquigarrow Correlated \mathbf{X}_j 's (in addition)

Potential consequences

- Truly influential $\mathbf{X}_j \rightsquigarrow$ Underestimated importance
- Seemingly influential $\mathbf{X}_j \rightsquigarrow$ Overestimated importance

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 11 / 43

Conditional inference trees (I/III) Basic idea

Bootstrap samples (with replacement, $b \in \{1, ..., B\}$)

Sampled ("bag") data	\rightarrow	\mathcal{L}_b	\rightarrow	Unpruned tree \mathcal{T}_b
"Out-of-bag" (OOB) data	\rightarrow	$\mathcal{O}_b = \mathcal{L} ackslash \mathcal{L}_b$	\rightarrow	Validation

Node splitting

- Conditional inference framework ~-> Generic algorithm

Stop criteria

- Generic algorithm \rightsquigarrow No association between ${\bf X}$ and ${\bf Y}$
- Terminal nodes \rightsquigarrow Minimum number of observations n_{\min}

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 12 / 43 Conditional inference trees (II/III) Generic node splitting algorithm

Key idea

- Variable selection, node splitting ~-> Separation
- Node representation \rightsquigarrow Case weights $\mathbf{w}_m \in \{0, 1\}^N$

Selection step

- $H_0: \mathcal{D}(\mathbf{Y}|\mathbf{X}, \mathbf{w}_m) = \mathcal{D}(\mathbf{Y}|\mathbf{w}_m) \rightsquigarrow \mathsf{Test}$
- No rejection → Stop
- Rejection \rightsquigarrow Find \mathbf{X}_{j*} with strongest association to \mathbf{Y}

Split step

- Take $\mathbf{X}_{j*} \rightsquigarrow$ Find optimal binary split
- Daughter nodes \rightsquigarrow Find case weights $\mathbf{w}_m^{\mathsf{left}}$ and $\mathbf{w}_m^{\mathsf{right}}$

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 13 / 43

Conditional inference trees (III/III)

Conditional permutation scheme

- Permutation of \mathbf{X}_j 's values in $\mathcal{O}_b \rightsquigarrow$ Mimic absence of \mathbf{X}_j
- Grid \rightsquigarrow Cut-points of $\mathbf{X}_j^c = (\mathbf{X}_1 \dots \mathbf{X}_{j-1} \mathbf{X}_{j+1} \dots \mathbf{X}_p)$ in \mathcal{T}_b

Permutation-based importance measure

$$\mathsf{VI}(\mathbf{X}_j) = \frac{1}{B} \sum_{b=1}^{B} \sum_{i \in \mathcal{O}_b} \left[\frac{\mathcal{I}\{y_i \neq \hat{y}_i(\mathcal{T}_b, \mathbf{X}_{\pi(j)|\mathbf{X}_j^c})\}}{|\mathcal{O}_b|} - \frac{\mathcal{I}\{y_i \neq \hat{y}_i(\mathcal{T}_b, \mathbf{X}_j)\}}{|\mathcal{O}_b|} \right]$$

Interpretation

- Prediction accuracy of $\mathbf{X}_j \rightsquigarrow$ Mean decrease

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 14 / 43

What is next?

Motivation

Random forests and conditional inference trees

Candidate and overall seasonality tests

Simulation algorithm and design

Results

Summary

References

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 15 / 43

Preliminaries

ARIMA model

$$\phi_p(B)\Phi_P(B^{\tau})(1-B)^d(1-B^{\tau})^D\{x_t\} = \theta_q(B)\Theta_Q(B^{\tau})\{\varepsilon_t\}$$

Short form notation

$$- (pdq)(PDQ)$$

Classification rule

$$(PDQ) = (000) \rightarrow \{x_t\}$$
 is non-seasonal (N-S)
 $(PDQ) \neq (000) \rightarrow \{x_t\}$ is seasonal (S)

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 16 / 43

Candidate tests (I/III)

Name	Variable checked for significance	Short
Modified QS test	Autocorrelations at seasonal lags	QS
Friedman test	ANOVA with repeated measures on intra-year ranks	FT
Kruskal-Wallis test	ANOVA without repeated measures on overall ranks	KW
Test for spectral peaks ¹⁾	Tukey and AR(30) spectra at seasonal frequencies	SP
Periodogram test	Weighted sum of periodogram at seasonal frequencies	PD
F-test on seasonal dummies	Effects of seasonal dummies in the " $(pdq)(000)$ + mean + seasonal dummies" model	SD

1 This test is not considered as a candidate test.

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 17 / 43

Candidate tests (II/III) Medical (MD) and unit root (UR) tests

Name	Variable checked for significance	Short
Welch test	ANOVA with repeated measures on time series for heteroskedastic data	WE
Welch-Kruskal- Wallis test	ANOVA with repeated measures on overall ranks for heteroskedastic data	WEKW
Edwards test	Efficient score vector at seasonal harmonics with square root transformation	ED
Roger test	Efficient score vector at seasonal harmonics without square root transformation	RO
OCSB test ¹⁾	Effect of seasonal unit root in the "Mean + unit root + seasonal unit root + augmentations" model	OCSB

1 Three variants of this test are considered: OCSB1 uses augmentation lags $\{1,2,3\}$, OCSB2 uses augmentation lags $\{1,2,3,12,13\}$ and OCSB3 is OCSB2 with the disturbances being a MA(1) process instead of white noise.

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 18 / 43

Candidate tests (III/III) ARIMA residual-based variants

Non-seasonal ARIMA model

$$\phi_p(B)(1-B)^d\{x_t\} = \mu + \theta_q(B)\{\varepsilon_t\}$$

Model identification

- Method ~ Hyndman & Khandakar (2008)
- Restrictions $\rightsquigarrow p \leqslant 3$, $q \leqslant 3$

Residual-based tests

- FT, KW, QS, RO, WE, WEKW ~>> Application to ARIMA residuals
- Short form → Suffix "-R"

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 19 / 43

Overall test

Goal

- Model parsimony, prediction accuracy ~>> Potential conflict
- Interpretable results, low misclassification rates ~>> Balance

Step 1

- Most informative tests (MIT) \rightsquigarrow Identification
- − Conditional random forests (CRF) → Recursive feature elimination (RFE)

Step 2

- Classification rule ~> Derivation
- Combination of MIT ~>> Conditional inference tree

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 20 / 43

Step 1: identification of most informative tests (I/III)

Step (a): initialise

- $\mathcal{L} \ = \ (\mathbf{X}\mathbf{Y})$
- $\mathbf{X} = p$ -values of candidate tests \rightarrow Entire set
- \mathbf{Y} = Seasonality dummy \rightarrow Simulated ARIMA models

Step (b): grow multiple CRFs

$$\begin{array}{lll} \mathcal{L} & \rightarrow & \text{Independent samples } \mathcal{L}^{(i)}, \\ & & \text{Validation (VAL) data } \mathcal{V}^{(i)} = \mathcal{L} \backslash \mathcal{L}^{(i)} & \rightarrow & i \in \{1, \dots, L\} \\ \mathcal{L}^{(i)} & \rightarrow & \text{Bootstrap samples } \mathcal{L}^{(i)}_b, \\ & & \text{OOB data } \mathcal{O}^{(i)}_b = \mathcal{L}^{(i)} \backslash \mathcal{L}^{(i)}_b & \rightarrow & b \in \{1, \dots, B\} \\ \mathcal{L}^{(i)}_b & \rightarrow & \text{Conditional inference tree } \mathcal{T}^{(i)}_b \end{array}$$

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 21 / 43

Step 1: identification of most informative tests (II/III)

Step (c): aggregate information

$$\begin{array}{lll} \bigcup_b \mathcal{O}_b^{(i)} & \to & \text{Importance VI}^{(i)}(\mathbf{X}_j), \\ & & \mathsf{VI}(\mathbf{X}_j) = L^{-1} \sum_{i=1}^L \mathsf{VI}^{(i)}(\mathbf{X}_j) & \to & j \in \text{candidate tests} \\ \mathcal{V}^{(i)} & \to & \text{Overall misclassification rate} \\ & & \mathsf{MR}^{(i)} = \mathsf{MR}\left(\bigcup_b \mathcal{T}_b^{(i)}\right) & \to & \mathsf{Mean/Median, SD} \end{array}$$

Step (d): eliminate least important test

$$\mathbf{X} \rightarrow \mathbf{X}_* = \arg\min_j \mathsf{VI}(\mathbf{X}_j) \rightarrow \mathcal{L} = (\mathbf{X}^c_* \mathbf{Y})$$

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 22 / 43 Step 1: identification of most informative tests (III/III)

Step (e): repeat steps (b) to (d)

Stop criterion \rightarrow $|\mathbf{X}| = p_{\min} \rightarrow$ RFE path

Step (f): select most informative tests

$$\begin{array}{rcl} \mathsf{RFE} \mbox{ path } & \to & \mathsf{Mean}/\mathsf{Median} \left(\mathsf{MR}^{(1)}, \dots, \mathsf{MR}^{(L)}\right), \\ & & \mathsf{SD} \left(\mathsf{MR}^{(1)}, \dots, \mathsf{MR}^{(L)}\right), \\ & & & |\mathbf{X}| & \to & \mathbf{X}_{\mathsf{MIT}} \end{array}$$

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 23 / 43

Step 2: derivation of classification rule

Step (a): grow single decision tree

Step (b): prune single decision tree (optional)

\mathcal{T}^{\star}	\rightarrow	Potential redundancies		
		(depending on $ \mathbf{X}_{MIT} , n_{min}, \ldots$),		
		Pruned conditional inference tree	\rightarrow	Simplified but
				equivalent rule

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 24 / 43

What is next?

Motivation

Random forests and conditional inference trees

Candidate and overall seasonality tests

Simulation algorithm and design

Results

Summary

References

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 25 / 43

Model identification

Goal

- Construction of overall test \rightsquigarrow "Representative" ARIMA models ($\tau = 12$, model shares, distributional properties)
- Source ~-> BBk macroeconomic time series database

Samples

- Monthly seasonal adjustment $\rightsquigarrow 3,300$ time series
- No seasonal adjustment $\rightarrow 10,600$ time series

ARIMA identification

- JD+ → regARIMA & TRAMO automatic routines
- Model shares $p_{mk} \rightsquigarrow$ Averaged share in class $k \in \{N-S, S\}$

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 26 / 43

Model simulation

Weights

$$w_{mk} = \tilde{p}_{mk} \left(\sum_{j} \tilde{p}_{jk} \right)^{-1} \quad \text{with} \quad \tilde{p}_{mk} = p_{mk} \cdot \mathcal{I}\{ p_{mk} \ge 0.01 \}$$

Algorithm (Ollech & Webel, 2017)

- NORTA ~ Logspline density estimation
- ARMA parameters ~> Mimic multivariate distribution

Representative outcome

- $100,000 \cdot w_{mk}$ models $\rightsquigarrow 5, 10, 20$ years
- Total $\rightsquigarrow 600,000$ ARIMA models

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 27 / 43

Construction of overall test

Candidate tests

- Three branches $\rightsquigarrow 18$ tests
- Stationarity assumption ~> Differencing (if necessary)

Step 1: RFE path

- Steps (b) to (d) $\rightsquigarrow L = 50$ (size $\in [800; 8,000]$), B = 100, $n_{\sf min} = 1$
- Step (c) \rightsquigarrow VAL data = Samples from $\mathcal{V}^{(i)}$ (size = 50,000)
- Step (e) $\rightsquigarrow p_{\min} = 1$

Step 2: classification rule

- $\mathcal{L}^{\star} \rightsquigarrow \text{Size} = 50,000$
- $\mathcal{T}^{\star} \rightsquigarrow n_{\min} = 250$

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 28 / 43

What is next?

Motivation

Random forests and conditional inference trees

Candidate and overall seasonality tests

Simulation algorithm and design

Results

Summary

References

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 29 / 43

Model identification

Simulation weights

As a percentage

	Non-seasonal	(N-S) class	Seasonal (S) class		
Rank	Model m	Weight w_{mk}	Model m	Weight w_{mk}	
1	(011)(000)	22.8	(011)(011)	47.5	
2	(311)(000)	11.0	(010)(011)	8.3	
3	(110)(000)	10.3	(311)(011)	7.7	
4	(100)(000)	8.5	(210)(011)	6.6	
5	(211)(000)	5.4	(110)(011)	6.4	
6	(001)(000)	4.7	(211)(011)	4.4	
7	(010)(000)	4.2	(012)(011)	4.0	
8	(111)(000)	4.0	(111)(011)	3.6	
9	(012)(000)	3.6	(011)(111)	2.5	
10	(210)(000)	3.6	(010)(100)	2.0	

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 30 / 43

Misclassification rates (I/III) As a percentage, $\alpha = 0.01$

		Simulated ARIMA series							
		All lengths	5	5-year		10-year		20-year	
Classifie	er	N-S	S	N-S	S	N-S	S	N-S	S
CRF*	OOB	0.6	1.9	0.6	1.9	0.5	2.0	0.7	1.9
	VAL	0.6	1.9	0.6	2.0	0.5	1.8	0.6	1.8
JD+	QS	4.9	1.5	2.5	1.7	5.0	1.4	7.1	1.3
tests	QS-R	0.3	8.4	0.2	7.5	0.2	7.8	0.6	9.8
	FT	2.1	2.1	1.5	2.2	2.3	1.9	2.4	2.1
	FT-R	0.8	2.1	0.4	2.3	0.8	2.0	1.4	2.1
	KW	2.4	3.8	1.9	3.9	2.6	3.7	2.7	3.8
	KW-R	0.7	2.1	0.3	2.2	0.7	2.0	1.1	2.2
	PD	3.2	3.6	3.2	3.4	3.3	3.6	3.2	3.9
	SD	4.0	2.7	4.4	2.5	4.1	2.7	3.7	2.9
MD	RO	11.8	93.9	10.1	93.7	11.6	94.0	13.7	94.0
tests	RO-R	16.7	78.7	15.6	82.3	17.2	77.6	17.2	76.4
	ED	4.2	99.2	3.3	99.1	4.1	99.3	5.2	99.4
	WE	3.5	3.8	4.3	3.7	3.2	3.7	3.0	4.0
	WE-R	1.7	2.1	2.7	2.0	1.5	2.1	1.1	2.4
	WEKW	5.6	3.4	9.0	3.1	4.5	3.4	3.4	3.7
	WEKW-R	4.1	1.8	7.6	1.5	2.9	1.8	1.7	2.0
UR	OCSB1	4.9	4.3	7.8	3.8	3.7	4.5	3.2	4.6
tests	OCSB2	3.3	4.9	8.4	3.1	1.0	5.0	0.6	6.6
	OCSB3	10.5	4.6	11.9	3.2	8.6	4.7	11.0	5.9
* Average misclassification rates over 50 training data sets at the initial RFE stage.									

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 31 / 43

Misclassification rates (II/III) As a percentage, $\alpha = 0.05$

		Simulated ARIMA series							
		All lengths	5	5-year		10-year		20-year	
Classifie	er	N-S	S	N-S	S	N-S	S	N-S	S
CRF*	OOB	0.6	1.9	0.6	1.9	0.5	2.0	0.7	1.9
	VAL	0.6	1.9	0.6	2.0	0.5	1.8	0.6	1.8
JD+	QS	7.4	1.2	4.9	1.4	7.5	1.1	9.8	1.2
tests	QS-R	1.1	7.0	0.9	6.1	0.9	6.4	1.4	8.3
	FT	6.6	1.6	5.7	1.6	7.0	1.5	7.2	1.7
	FT-R	4.2	1.6	3.2	1.6	4.2	1.5	5.2	1.7
	KW	6.9	3.2	6.2	3.1	7.1	3.1	7.4	3.3
	KW-R	4.0	1.6	3.1	1.6	4.1	1.5	4.7	1.8
	PD	8.1	3.2	8.3	2.8	8.2	3.1	8.0	3.5
	SD	9.1	2.2	9.7	2.0	9.2	2.2	8.5	2.5
MD	RO	15.1	91.0	13.5	90.7	14.9	91.1	16.8	91.3
tests	RO-R	19.9	71.7	18.8	74.9	20.6	70.6	20.4	69.8
	ED	4.9	99.1	3.9	98.9	4.8	99.1	6.1	99.3
	WE	8.9	3.3	10.8	3.0	8.2	3.2	7.7	3.6
	WE-R	6.4	1.7	8.6	1.4	5.7	1.6	4.9	2.0
	WEKW	12.0	2.9	17.5	2.7	10.1	2.9	8.3	3.2
	WEKW-R	10.4	1.4	16.7	1.1	8.3	1.4	6.1	1.6
UR	OCSB1	2.9	7.1	4.0	7.0	2.4	7.4	2.3	6.7
tests	OCSB2	0.8	10.0	1.7	6.9	0.4	9.6	0.4	13.4
	OCSB3	3.5	8.5	3.6	7.0	3.1	8.6	4.0	9.8
* Average misclassification rates over 50 training data sets at the initial RFE stage.									

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 32 / 43

Misclassification rates (III/III) Preliminary conclusion

Residual-based tests

Lower ~>> Compared to standard tests (except for QS, RO)

ED & RO tests

– Unacceptably high (especially for class S) \rightsquigarrow No consideration for RFE path

OCSB tests

- − Lower for class S ~→ OCSB1
- Lower for class N-S (especially for longer series) → OCSB2

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 33 / 43

RFE path (I/II) Mean variable importance

Deutsche Bundesbank

S3PR0386.Chart

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 34 / 43

RFE path (II/II) Median variable importance

Deutsche Bundesbank

S3PR0386A.Chart

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 35 / 43

Classification rule (I/III) Conditional inference tree

Deutsche Bundesbank

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 36 / 43 Classification rule (II/III) Pruned conditional inference tree

Overall seasonality test

A time series is classified as seasonal if

- 1. p-value ≤ 0.011 for the QS-R test OR
- 2. p-value > 0.011 for the QS-R test AND

p-value ≤ 0.002 for the FT-R test.

Misclassification rates As a percentage All lengths 5-year 10-year 20-year N-S S N-S S N-S S N-S ς Data Training set $0.54 \quad 1.56$ 0.18 2.20 0.36 1.47 1.09 1.02 Validation set 0.56 1.57 0.28 2.07 $0.38 \quad 1.49 \quad 1.03 \quad 1.14$

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 37 / 43

Classification rule (III/III)

Are these economic time series seasonal?

	Retail trade turnover:		
Test	games and toys	HICP: tobacco	CPI: energy
QS	Yes	No	Perhaps
FT	Yes	No	Perhaps
KW	Yes	No	Yes
SP	Yes	No	No
PD	Yes	No	Yes
SD	Yes	No	Yes
Overal	seasonality test		
QS-R	p-value = 0.000	p-value = 0.969	p-value = 0.038
FT-R	p-value = 0.000	p-value = 0.740	p-value = 0.017
Σ	Yes	No	No

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 38 / 43

What is next?

Motivation

Random forests and conditional inference trees

Candidate and overall seasonality tests

Simulation algorithm and design

Results

Summary

References

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 39 / 43

In a nutshell

Overall seasonality test

- Most informative tests \rightsquigarrow Identification via RFE in CRF framework
- Classification rule ~>> Derivation via pruned conditional tree

Large-scale simulation study

- ARIMA models ~>> Representative of BBk database
- Most informative tests ~> ARIMA residual-based QS & FT tests
- Overall test ~ High precision, tractable rule

Future research

- Verification ~>> Unbalanced training data (N-S vs S), barely seasonal data
- Seasonality tests \rightsquigarrow Very short series, $\tau \neq 12$

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 40 / 43

What is next?

Motivation

Random forests and conditional inference trees

Candidate and overall seasonality tests

Simulation algorithm and design

Results

Summary

References

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 41 / 43

Random forests and conditional inference trees

- L Breiman (2001), Random Forests, Machine Learning 45 (1), 5-32.
- T Hothorn, K Hornik & A Zeileis (2006), Unbiased Recursive Partitioning: A Conditional Inference Framework, Journal of Computational and Graphical Statistics 15 (3), 651-674.
- H Strasser & C Weber (1999), On the Asymptotic Theory of Permutation Statistics, Mathematical Methods of Statistics 8, 220-250.
- C Strobl, A L Boulesteix, T Kneib, T Augustin & A Zeileis (2008), Conditional Variable Importance for Random Forests, BMC Bioinformatics 9, Article 307.

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 42 / 43

Simulation and automatic detection algorithms

- M C Cario & B L Nelson (1997), Modeling and Generating Random Vectors with Arbitrary Marginal Distributions and Correlation Matrix, Technical report, Northwestern University.
- R J Hyndman & Y Khandakar (2008), Automatic Time Series Forecasting: The forecast Package for R, Journal of Statistical Software 27 (3), 1-22.
- D Ollech & K Webel (2017), Assessing the Informational Content of Seasonality Tests by Random Forests of Conditional Inference Trees, JSM Proceedings, 1889-1900.
- C J Stone, M H Hansen, C Kooperberg & Y K Truong (1997), Polynomial Splines and their Tensor Products in Extended Linear Modeling, The Annals of Statistics 25 (4), 1371-1470.

Karsten Webel (BBk) Overall seasonality test – 5th ITISE, 20 September 2018 Page 43 / 43