Trading on Short-term Path Forecasts of Intraday Electricity Prices

Tomasz Serafin1, Grzegorz Marcjasz1, Rafał Weron1

1Department of Operations Research and Business Intelligence, Faculty of Management, Wrocław University of Science and Technology, Poland
Modeling framework

- We consider transactions from the German continuous intraday market
- We look at the last three hours of trading before the delivery
- We consider ten 15-minute volume-weighed average prices
Forecasting methods

Point forecasts
- LASSO
- QR
- Gaussian Copula
- Random quantiles at t_1
- Direct
- LQC
- AQL

Probabilistic forecasts
- LASSO
- QR
- Multivariate t-Student
- Historical vectors of increments
- Historical vectors of errors

Path forecasts
- Multivariate t-Student
- Historical vectors of increments
- Historical vectors of errors

Starting point for paths
- VWAP at t_0
- VWAP at t_0
- Direct
- Direct
- Direct
- Direct
- Naive

Prediction band
- Similar Day (SD)
- LASSO bootstrap
- LASSO point
- Market data
Prediction bands

A simultaneous prediction band with coverage probability $1 - \alpha$ is a set of points $(B_{d,h,t_1}^{\text{up}}, \ldots, B_{d,h,t_{10}}^{\text{up}})$ that satisfies the following condition:

$$\mathbb{P} \left(X_{d,h,t_j} \leq B_{d,h,t_j}^{\text{up}}, \forall t_j \right) = 1 - \alpha,$$

where $j = 1, \ldots, 10$.
Prediction bands

- Prediction bands may be obtained in three different ways:
 - Directly from a number of generated path forecasts (Direct)
 - Using the approximate method based on forecasted quantiles (AQL)
 - Using the naive construction based on point forecasts (Naive)
Prediction bands: the direct approach

Point forecasts:
- LASSO
- QR
- Gaussian Copula
- Random quantiles at t_1
- Direct

Probabilistic forecasts:
- LASSO
- QR

Path forecasts:
- Multivariate t-Student
- Historical vectors of increments
- Historical vectors of errors

Starting point for paths:
- VWAP at t_0

Prediction band:
- LQC
- AQL
- t-Student
- Similar Day (SD)
- LASSO bootstrap
- LASSO point

Market data

Tomasz Serafin (Wrocław, PL)
Prediction bands: the direct approach

- The approach based on forecasted price paths
- Extreme prices at each time point are identified and trajectories containing these values are discarded
The procedure is repeated until $\alpha\%$ of trajectories are removed.
The prediction band with simultaneous coverage probability $1 - \alpha\%$ is formed by linking maximum values of the remaining trajectories.
LASSO-QR-Copula (LQC) procedure

- **Point forecasts**: LASSO → QR → Gaussian Copula → Random quantiles at t_1 → Direct
- **Probabilistic forecasts**: LASSO → QR → Multivariate t-Student
- **Path forecasts**: Historical vectors of increments → Historical vectors of errors
- **Starting point for paths**: VWAP at t_0 → VWAP at t_0 → Direct → Direct → Direct → Naive
- **Prediction band**: LQC → AQL → t-Student → Similar Day (SD) → LASSO bootstrap → LASSO point

Market data

Tomasz Serafin (Wrocław, PL)
Point forecasts

- The VWA price in the j-th 15-minute period t_j, on day d and hour h is forecasted with LASSO-estimated model.
- Considered variables:
 - Past intraday and day-ahead electricity prices
 - Wind generation and consumption actual values
 - Wind generation and consumption forecasts
Probabilistic & path forecasts

- Quantile regression is used to obtain 99 percentiles of the price in each 15-min interval.
- Trajectories are created by selecting correlated quantiles (time-dependency is captured by the correlation matrix) in subsequent time points.
- The matrix is estimated based on the historical coverage errors of forecasted price quantiles (Pinson et al. (2009)).
LASSO bootstrap procedure

- **Point forecasts**: LASSO
- **Probabilistic forecasts**: QR
- **Path forecasts**: Gaussian Copula
- **Starting point for paths**: Random quantiles at t_1
- **Prediction band**: Direct
- **LQC**: AQL
- **AQL**: t-Student
- **Similar Day (SD)**: Historical vectors of increments
- **Historical vectors of errors**: LASSO bootstrap
- **LASSO point**: Naive

Market data

Tomasz Serafin (Wrocław, PL)
LASSO bootstrap procedure

- Time dependency is modeled with historical errors of the point forecasting model.
- Price trajectories are constructed by adding randomly drawn vectors of historical errors to point forecasts from the LASSO model:

\[
\tilde{X}_{d,h,t_j} = \hat{X}_{d,h,t_j} + \varepsilon_{d^*,h,t_j},
\]

where \(\varepsilon_{d^*,h,t_j}\) is the \(j\)-th component of a randomly drawn vector of past errors of the LASSO model.
Prediction bands: the AQL method

Point forecasts:
- LASSO
- QR
- Gaussian Copula
- Random quantiles at t_1
- Direct

Probabilistic forecasts:
- Multivariate t-Student
- Historical vectors of increments
- Historical vectors of errors

Path forecasts:
- VWAP at t_0

Starting point for paths:
- Direct

Prediction band:
- LQC
- AQL
- Similar Day (SD)
- LASSO bootstrap
- LASSO point

Market data:
Prediction bands: the AQL method

- The approach based on forecasted quantiles
- The quantile line of order $1 - \alpha$:
 \[
 \left(\hat{q}_{d,h,t_1}^{(1-\alpha)}, \ldots, \hat{q}_{d,h,t_{10}}^{(1-\alpha)} \right)
 \]
- We assume that the prediction band with simultaneous coverage probability $1 - \alpha$ is a quantile line of order $1 - \alpha^*$
Prediction bands: the AQL method

- The order of the quantile line, $1 - \alpha^*$, is approximated using the historical coverage of quantile lines from the previous 91 days:

![Graph showing the historical simultaneous coverage probability vs. quantile line order]
Prediction bands: the point forecasts based method
Prediction bands: the point forecasts based method

- This benchmark is solely based on point forecasts from the LASSO model.
- The naive prediction band (not dependent on α) is a vector of point forecasts for the consecutive 15-minute periods:

$$B_{d,h,t_i}^{up} = \hat{P}_{d,h,t_i},$$

for all $j = 1, \ldots, 10$
Trading strategies
Real-life market simulation

- A small energy producer
- Sells 1 MWh of electricity in the continuous German intraday market, each hour, each day
Prediction band-based strategy

Prediction bands determine the price of the *limit order* which is placed in the market every 15 minutes.

![Graph showing price trends over time](image-url)
Results

![Graph showing the results of different models: AQL, LASSO bootstrap, LQC, LASSO point, and Naive last. The x-axis represents the simultaneous coverage probability p, ranging from 5% to 95%, and the y-axis represents profit in thousands of EUR, ranging from 176.5 to 182. The graph compares the performance of these models under Gaussian and historical vectors of errors.](#)
Conclusions

- Prediction bands are a great tool to assess the economic value of probabilistic and path forecasts.
- Strategies based on the more complex forecasting approaches result in higher profits for the trading company.
- Trajectory forecasts are a viable alternative to probabilistic forecasts and their use may bring potential gains for the electricity trading company.
Thank you very much!
LASSO-QR-Copula (LQC) procedure

Point forecasts
- LASSO
- QR
- Gaussian Copula
- Random quantiles at t_1
- Direct
- LQC

Probabilistic forecasts
- LASSO
- QR
- Multivariate t-Student
- Historical vectors of increments
- Historical vectors of errors

Path forecasts
- AQL
- Direct
- VWAP at t_0
- Direct
- Similar Day (SD)
- LASSO bootstrap
- LASSO point

Starting point for paths
- Naive

Prediction band
- Market data
Point forecasts

The model with potential regressors for the VWA price in the j-th 15-minute period t_j, on day d and hour h is given by:

$$X_{d,h,t_j} = \beta_0 + \sum_{i=4}^{24} \beta_{i-3} I D_{3,d,h-i} + \sum_{i=0}^{24} \beta_{22+i} D A_{d,h-i} +$$

$$+ \sum_{i=0}^{24} \beta_{47+i} \hat{W}_{d,h-i} + \beta_{72} W_{d,h-4} + \beta_{73} W_{d,h-24} +$$

$$+ \sum_{i=0}^{24} \beta_{74+i} \hat{C}_{d,h-i} + \beta_{99} C_{d,h-4} + \beta_{100} C_{d,h-24} +$$

$$+ \beta_{101} \tilde{P}_{d,h},$$
Point forecasts

The model with potential regressors for the VWA price in the j-th 15-minute period t_j, on day d and hour h is given by:

$$X_{d,h,t_j} = \beta_0 + \sum_{i=4}^{24} \beta_{i-3} ID_{3,d,h-i} + \sum_{i=0}^{24} \beta_{22+i} DA_{d,h-i} +$$

$$+ \sum_{i=0}^{24} \beta_{47+i} \hat{W}_{d,h-i} + \beta_{72} W_{d,h-4} + \beta_{73} W_{d,h-24} +$$

$$+ \sum_{i=0}^{24} \beta_{74+i} \hat{C}_{d,h-i} + \beta_{99} C_{d,h-4} + \beta_{100} C_{d,h-24} +$$

$$+ \beta_{101} \hat{P}_{d,h},$$
Point forecasts

The model with potential regressors for the VWA price in the j-th 15-minute period t_j, on day d and hour h is given by:

$$X_{d,h,t_j} = \beta_0 + \sum_{i=4}^{24} \beta_{i-3} ID_{3,d,h-i} + \sum_{i=0}^{24} \beta_{22+i} DA_{d,h-i} +$$

$$+ \sum_{i=0}^{24} \beta_{47+i} \hat{W}_{d,h-i} + \beta_{72} W_{d,h-4} + \beta_{73} W_{d,h-24} +$$

$$+ \sum_{i=0}^{24} \beta_{74+i} \hat{C}_{d,h-i} + \beta_{99} C_{d,h-4} + \beta_{100} C_{d,h-24} +$$

$$+ \beta_{101} \tilde{P}_{d,h},$$
Point forecasts

The model with potential regressors for the VWA price in the j-th 15-minute period t_j, on day d and hour h is given by:

\[
X_{d,h,t_j} = \beta_0 + \sum_{i=4}^{24} \beta_{i-3} ID_{3,d,h-i} + \sum_{i=0}^{24} \beta_{22+i} DA_{d,h-i} + \\
\sum_{i=0}^{24} \beta_{47+i} \hat{W}_{d,h-i} + \beta_{72} W_{d,h-4} + \beta_{73} W_{d,h-24} + \\
\sum_{i=0}^{24} \beta_{74+i} \hat{C}_{d,h-i} + \beta_{99} C_{d,h-4} + \beta_{100} C_{d,h-24} + \\
\beta_{101} \tilde{P}_{d,h},
\]

Tomasz Serafin (Wrocław, PL)
Probabilistic forecasts

- Quantile regression is used to obtain 99 percentiles of the price in each 15-min interval.
- The value of quantile α is given by:

$$\hat{q}_{d,h,t_j}^{(\alpha)} = w_{\alpha,t_j} \hat{X}_{d,h,t_j},$$

where w_{α} is a vector of weights for quantile α, estimated by minimizing the pinball score:

$$\text{Pinball}(\hat{q}_{t}^{(\alpha)}, X_t, \alpha) = \begin{cases} (1 - \alpha)(\hat{q}_{t}^{(\alpha)} - X_t) & \text{for } X_t < \hat{q}_{t}^{(\alpha)}, \\ \alpha(X_t - \hat{q}_{t}^{(\alpha)}) & \text{for } X_t \geq \hat{q}_{t}^{(\alpha)}, \end{cases}$$
Gaussian Copula

- Trajectories are created by selecting correlated quantiles in subsequent time points
- Time-dependencies are captured by the correlation matrix
- The matrix is estimated based on the historical coverage errors of forecasted price quantiles (Pinson et al. (2009))
Additional strategies

- **Naive\textsubscript{first}**: The electricity is sold for the market price 3 hours and 15 minutes before the delivery
- **Naive\textsubscript{last}**: The electricity is sold at the last price in the market
- **Naive\textsubscript{avg}**: The electricity is sold in 10 portions of 0.1 MW in each sub-period

Performance of a strategy depends on the choice of the simultaneous coverage probability (p) of prediction bands.

We can use a rolling 91-day window for the automated selection of the optimal value of p.
Evaluation of strategies

- Total profit from selling 1 MWh of electricity every hour \(h \) each day \(d \) of the \(N = 200 \) out-of-sample period:

\[
\text{Profit} = \sum_{d=1}^{N} \sum_{h=1}^{24} G_{d,h}
\]

- 90%, 95% and 99% Value-at-Risk of daily profits
Results
Results

- **Maximum** possible profit (crystal ball):
 - 196 650 EUR

- **Minimal** possible profit:
 - 157 590 EUR

- **LQC** method:
 - 181 950 EUR (ca. 63% of possible gains from forecasting)

- **Naive** methods:
 - from 176 135 to 177 265 EUR (ca. 48 to 51% of possible gains from forecasting)
Results

<table>
<thead>
<tr>
<th></th>
<th>90% VaR</th>
<th>95% VaR</th>
<th>99% VaR</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-Student</td>
<td>622.10</td>
<td>349.64</td>
<td>-231.38</td>
</tr>
<tr>
<td>AQL</td>
<td>645.05</td>
<td>409.16</td>
<td>-143.96</td>
</tr>
<tr>
<td>SD</td>
<td>622.10</td>
<td>345.28</td>
<td>-240.07</td>
</tr>
<tr>
<td>LQC</td>
<td>643.16</td>
<td>425.05</td>
<td>-116.08</td>
</tr>
<tr>
<td>Naive<sub>first</sub></td>
<td>631.85</td>
<td>392.90</td>
<td>-143.97</td>
</tr>
<tr>
<td>Naive<sub>last</sub></td>
<td>634.70</td>
<td>418.18</td>
<td>-232.83</td>
</tr>
<tr>
<td>Naive<sub>avg</sub></td>
<td>629.47</td>
<td>407.28</td>
<td>-171.44</td>
</tr>
<tr>
<td>LASSO bootstrap</td>
<td>650.68</td>
<td>405.96</td>
<td>-139.36</td>
</tr>
<tr>
<td>LASSO point</td>
<td>627.52</td>
<td>385.08</td>
<td>-147.27</td>
</tr>
</tbody>
</table>